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Application of Quantum Transport in Devices | -

*What is the focus of the research?

* Quantum Transport |
=> Devices/Structures are a tool to explore the needed theory

* Relevant Theories:
Green Functions, Wigner Functions, Rate Equations

e Relevant Structures:
quantum dots/wires, molecules, RTDs (for time dependence only)

*Devices / Applications
=> Quantum transport is a tool to design/optimize devices

* Relevant devices: super-scaled FETs, RTDs, Esaki diodes
*Need quantitative agreement between experiment and theory
*DC, high bias performance
*AC / time-dependent high bias performance
e Need realistically sized devices - contacts/reservoirs.

*Need realistic electron interactions with environment:
\_ phonons, light, bandstructure. y
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Quantitative Modeling of Devices |
Quick review of DC transport simulations in RTDs - NEMO 1-D
* Realistic contacts:
* Quantized and continuous states in the emitter
* Realistic bandstructure:
*Band-non parabolicity - emitter states and RTD state alignment
* Putting it together:
*Valley current at high temperatures due to bandstructure effects
(thermionic emission)
*Bistability (in symmetric structures) a numerical problem due to
limited device models
*Test matrix - comparison to experiment
\ J
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Realistic Devices have Extended Contacts |
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Band non-parabolicity modifies
momentum dependence in emitter-KTD coupling
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1D integration assuming
parabolic subbands can lead to
unphysical current overshoots.

*2 Examples on InGaAs/InAlAs
simulations:

*Sp3s* simulation with partial
charge self-consistency
-> sharp spike at turn-off

* Parameterized single band
simulation which incorporates
the band-non-parabolicity
-> overall current overshoot.

-> 2D integration with good
bandstructure fixes these
unphysical results.

RN 4

Full Band Simulation of Electron Transport

/
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Spurious Bistability:
More Physics -> Better results
Full band integration + Exchange&Correlation

Applied Bias (V) Applied Bias (V)

* Calculate the exchange and correlation potential in LDA.

* Exchange and correlation energy does not eliminate (in general) the bistability, it
does reduce it however.

(Inclusion of scattering in the simulation reduces the bistability region as well.
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Scattering also reduces the |
numerical bi-stability

e Current Model:
8000 r [ P— . fgéf-consi?tgg Pelastig and single
~ {‘ _____ NS buck ri |a.gona scattering
"= 6000 - : S back * Potential Models:
2 ': Hartree self-consistency
g 4000 |- '. - * no scattering
§ ': . selfconsister_wt elastic and tridiagonal
2000 :| kL _ POP scattering
) A e Compare forward to reverse bias
01 015 02 025 03 sweep:
Voltage (V)

e Scattering reduces the width of the
bistability region.

* not shown: inclusion of exchange
correlation does not change the
width of the bistability in this device.
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Testmatrix-Based Verification (room temperature)
Strained InGaAs/AlAs 4 Stack RTD with Asymmetric Barrier Variation
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Nano-scale Device Analysis / Synthesis
Development of a Bottom-Up Nanoelectronic Modeling Tool (NEMO-3D)

NHEC )

Absorption

Atomic Orbitals Nanoscale
size: 0.2nm tructures (~20nm)

New Devices for
Sensing and
Computing

Analyze Devices:
Environmen
and Failures

Assertions / Problems:

* Nanoscale structures are built today!
The design space is huge: choice of
materials, compositions, doping, size, shape

» Radiation on today’s sub-micron devices
modifies the electronics on a nanoscale.

Approach:

e Deliver a 3-D atomistic simulation tool

e Enable analysis of arbitrary crystal
structures, particles, atom compositions and
bond/structure at arbitrary temperatures and
ambient electric and magnetic fields.

Collaborators:
e U. of Alabama, Ames, Purdue, Ohio State,

\NIST
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NASA Relevance:
* Enable new devices needed for NASA
missions beyond existing industry roadmap:
* Water detection -> 2-5um Lasers and
detectors.
* Avionics -> High density, low power
computing.
* Analyze state-of-the-art devices for non-
commercial environments:
* Europa -> Radiation and low temperature
effects. Aging and failure modes.
* Jovian system -> Magnetic field effects
* Venus -> high temperature materials: SiGe

Impact:
* Low cost development of revolutionary techn.
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Speakers in the Program

eCarlo Jacoboni,
Modena University,
“The Wigner function and quantum transport”

eHarold Grubin,
SRA, Inc.,
“Modeling resonant tunneling diodes with Wigner functions
and density matrices”

*Dejan Jovanovic,
Motorola,
“Non-equilibrium Green’s functions for MOSFET modeling”
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Application of Quantum Transport in Devices =~ | ~

*What is the focus of the research?

e Quantum Transport
=> Devices/Structures are a tool to explore the needed theory

e Relevant Theories:
Green Functions, Wigner Functions, Rate Equations

* Relevant Structures:
quantum dots/wires, molecules, RTDs (for time dependence only)

*Devices / Applications
=> Quantum transport is a tool to design/optimize devices

e Relevant devices: super-scaled FETs, RTDs, Esaki diodes
*Need quantitative agreement between experiment and theory
*DC, high bias performance
*AC / time-dependent high bias performance
*Need realistically sized devices - contacts/reservoirs.

*Need realistic electron interactions with environment:
\_ phonons, light, bandstructure. )

Gerhard Klimeck




J P L Advanced Research Workshop on Quantum Transport in Semiconductors

Quantitative Modeling of Devices

Quick review of DC transport simulations in RTDs - NEMO 1-D

* Realistic contacts:
*Quantized and continuous states in the emitter

* Realistic bandstructure:
*Band-non parabolicity - emitter states and RTD state alignment

* Putting it together:

eValley current at high temperatures due to bandstructure effects
(thermionic emission)

Bistability (in symmetric structures) a numerical problem due to
limited device models

*Test matrix - comparison to experiment
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Band non-parabolicity modifies
momentum dependence in emitter-RTD coupling

Density of States (k,=0.03)

Density of States (k,=0.00)
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Full Band Simulation of Electron Transport

3

Current (mA)

N
I

[y
I

¥

0.2 0.4 0.6
Applied Bias (V)

0.8

InGaAs/InAlAs V1909 #4

W

Yok [ ]
i i

Current Density (}04 A/cm?")
£

O

]

i i { T |

0

02 04 06
Applied Bias (V)

*1D integration assuming
parabolic subbands can lead to
unphysical current overshoots.

2 Examples on InGaAs/InAlAs
simulations:

*Sp3s* simulation with partial
charge self-consistency
-> sharp spike at turn-off

e Parameterized single band
simulation which incorporates
the band-non-parabolicity
-> overall current overshoot.

-> 2D integration with good
bandstructure fixes these
unphysical resuits.
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Spurious Bistability: <)

More Physics -> Better results
Full band integration + Exchange&Correlation
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* Calculate the exchange and correlation potential in LDA.

* Exchange and correlation energy does not eliminate (in general) the bistability, it
does reduce it however.

anlusion of scattering in the simulation reduces the bistability region as well. )
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Scattering also reduces the
numerical bi-stability

e Current Model:
2000 | * self-consistent elastic and single
= NS back ™ tridiagonal POP scattering
~ SS forward .
"% 6000 '. SS back * Potential Models:
= '. Hartree self-consistency
2 4000 ': - * no scattering
§ ' * selfconsistent elastic and tridiagonal
2000 ! \ i POP scattering
LN
1 \ .
| L | * Compare forward to reverse bias
01 015 02 025 03 sweep:
Voltage (V)

» Scattering reduces the width of the
bistability region.

* not shown: inclusion of exchange
correlation does not change the
width of the bistability in this device.
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Testmatrix-Based Verification (room temperature) |

Strained InGaAs/AlAs 4 Stack RTD with Asymmetric Barrier Variation
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Tow Temperature: Polar Optical Phonon and
Interface Roughness Scattering
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Nano-scale Device Analysis / Synthesis
Development of a Bottom-Up Nanoelectronic Modeling Tool (NEMO-3D)

Absorption

Nanoscale
tructures (~20nm)

Atomic Orbitals
size: 0.2nm

New Devices for
Sensing and
Computing

Analyze Devices:

and Failures

Assertions / Problems:

* Nanoscale structures are built today!
The design space is huge: choice of
materials, compositions, doping, size, shape

» Radiation on today’s sub-micron devices
modifies the electronics on a nhanoscale.

Approach:

e Deliver a 3-D atomistic simulation tool

* Enable analysis of arbitrary crystal
structures, particles, atom compositions and
bond/structure at arbitrary temperatures and
ambient electric and magnetic fields.

Collaborators:

e U. of Alabama, Ames, Purdue, Ohio State,

\NIST
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NASA Relevance:
* Enable new devices needed for NASA
missions beyond existing industry roadmap:
» Water detection -> 2-5um Lasers and
detectors.
* Avionics -> High density, low power
computing.
» Analyze state-of-the-art devices for non-
commercial environments:
» Europa -> Radiation and low temperature
effects. Aging and failure modes.
* Jovian system -> Magnetic field effects
* Venus -> high temperature materials: SiGe

Impact:
* Low cost development of revolutionary techn.
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